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ANALYSIS O F  SEVERAL RELATIONS 
AMONG ATMOSPHERIC STATISTICS 

By R. A. Minzner" and P. Morgensternt 

SUMMARY 

A s t a t i s t i c a l l y  r igorous  equat ion  r e l a t i n g  E, 5, and p ,  t h e  
mean values  of  p re s su re ,  temperature ,  and d e n s i t y ,  r e s p e c t i v e l y ,  
i n t o  a gas-law-like express ion  inc ludes  ( i n  a d d i t i o n  t o  t h e  regu- 
l a r  gas-law-like t e r m s )  a c o r r e c t i o n  t e r m  p ropor t iona l  t o  t h e  
covariance between d e n s i t y  and temperature.  The a p p l i c a t i o n  of  
t h e  d a t a  from a set  of  437 rocke t  soundings and several quas i -  
homogeneous subse t s  of t h e  same data showed t h e  value of t h e  
covariance term t o  be gene ra l ly  i n  t h e  range of +1 t o  -1 per- 
c e n t  of f o r  a l t i t u d e s  of 30 t o  6 0  km. Covariance term values  
increased  a t  g r e a t e r  a l t i t u d e s  and w e r e  l a r g e s t  f o r  a r c t i c  
l a t i t u d e s  and win te r  months. The a p p l i c a t i o n  of t h e  s a m e  d a t a  
sets t o  another  s t a t i s t i c a l  equat ion  r e l a t i n g  aa{p)/az ( t h e  
d e r i v a t i v e  of t h e  s t anda rd  dev ia t ion  of  p re s su re  with r e s p e c t  t o  
a l t i t u d e )  t o  a { p )  ( t h e  s t anda rd  d e v i a t i o n  of d e n s i t y )  i n  a form 
sugges t ive  of  t h e  h y d r o s t a t i c  equat ion  (which r e l a t e s  ap/az t o  p )  
Yielded very poor agreement, undoubtedly owing t o  l a r g e  uncer- 
t a i n t i e s  i n  t h e  observed va lues  of aa{p)/az. An i n t e g r a l  form 
of t h e  s a m e  equa t ion ,  however, se rved  t o  p r e d i c t  t h e  observed 
data r a t h e r  w e l l .  

I 

! 

I .  INTRODUCTION 

I t  has  been customary i n  t h e  gene ra t ion  of model. atmos- 
pheres during t h e  p a s t  decade ( r e f s .  1-7)  t o  use t h e  fol lowing 
procedure: 

1. Determine a mean a l t i t u d e  p r o f i l e  f o r  a s i n g l e  thermo- 
dynamic atmospheric v a r i a b l e  from a v a i l a b l e  sounding 
d a t a ,  

2 .  Introduce t h i s  a l t i t u d e  p r o f i l e  i n t o  t h e  hypsometric 
equat ion  and t h e  gas  l a w  ( o r  equat ion  of s t a t e ) ,  and 
compute t h e  model a l t i t u d e  p r o f i l e s  of o t h e r  thermo- 
dynamic p r o p e r t i e s .  

Thus, whi le  t h e  model atmosphere appears  t o  be gene ra l ly  
! c o n s i s t e n t  wi th  t h e  mean va lues  of temperature ,  p re s su re ,  and 

d e n s i t y  deduced from sounding d a t a ,  t h e  model w a s  der ived  as i f  
t h e r e  had been b u t  a s i n g l e  sounding. I t  may be demonstrated 
t h a t  t h e  mean va lue  of d e n s i t y  and t h e  mean value of p re s su re  

*E lec t ron ic s  Research Center ,  Cambridge, M a s s .  
TWalden Research Corporat ion,  Cambridge, M a s s .  



at a particular altitude calculated directly from the basic data 
of a number of soundings would not necessarily agree with the 
corresponding values of density and pressure as deduced by the 
above model-generation procedure. The implication of this situa- 
tion is that while the simple form of the gas law quite accurate- 
ly relates the thermodynamic properties of the atmosphere for a 
single sounding, it does not in general rigorously relate the 
corresponding mean values derived from a number of soundings. 

The gas law (or equation of state for an ideal gas) relating 
pressure, p, temperature, T, and density, p ,  can be expressed as 'I 

where M is the mean molecular weight of air and R is the univer- 
sa l  gas constant. The point values for p,  p ,  or T may be ex- 
pressed as the sum of the corresponding mean values, p, ;, or I\, 
and of the departures, P I ,  p ' ,  or T I ,  respectively, as follows: 

p = P + p '  (2) 

T = T + T '  ( 4 )  

Substituting Eqs. (2), ( 3 1 ,  and (4) into Eq. (11, and per- 
forming the indicated multiplications produces a second form of 
the gas law which, like Eq. (l), is also applicable only to a 
single set of conditions, i.e., only to a single sounding at a 
given altitude. 

Applying the averaging operator to both sides of Eq. (5) and 
noting that 

\ 
yields the result 
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where t h e  q u a n t i t y  p ' T '  i s  commonly termed t h e  covariance between 
p and T.  Thus, t h e  procedure f o r  developing model atmospheres 
descr ibed  above i s  s t r i c t l y  v a l i d  only i f  t h e  covariance i s  equal  
t o  zero. 

Equation ( 6 )  can a l s o  be expressed i n  t h e  a l t e r n a t e  form 

Y 

where aCp) and a{T) are t h e  s t anda rd  dev ia t ion  of d e n s i t y  and 
temperature ,  r e s p e c t i v e l y ,  and r C p , T }  i s  t h e  c o e f f i c i e n t  of 
c o r r e l a t i o n  between them. Since o(p)  and a{T) are almost always 
non-zero, t h i s  equat ion  shows t h a t  t h e  s t a t e d  procedure f o r  
developing model atmospheres i s  s t r i c t l y  v a l i d  only i f  t h e  cor-  
r e l a t i o n  between p and T i s  zero.  Both, Eqs. (6) and (7), are 
s t a t i s t i ca l  forms of t h e  gas l a w  as der ived  by Buel l  ( r e f .  8 ) .  

L 

The covariance term i n  Eq. ( 6 )  r ep resen t s  t h e  c o r r e c t i o n  
necessary t o  make t h e  gas l a w  s t r i c t l y  v a l i d  when app l i ed  t o  mean 
values  f o r  t h e  thermodynamic p r o p e r t i e s .  S t a t e d  another  way, t h e  
covariance t e r m  i s  a measure of t h e  e r r o r  i ncu r red  during t h e  
development of model atmospheres by t h e  method descr ibed  e a r l i e r .  
Normalizing t h i s  e r r o r  r e l a t i v e  t o  t h e  t o t a l  p re s su re  and con- 
v e r t i n g  t h e  r a t i o  t o  a percentage ,  t h e  error may be expressed as 

(8) R p 'oT' percentage c o n t r i b u t i o n  of covariance term = 1 0 0  
P 

Fur the r  i n s i g h t  i n t o  t h e  f a c t o r s  c o n t r i b u t i n g  t o  t h i s  e r r o r  term 
may be obta ined  by r ea r r ang ing  t e r m s  i n  Eq. ( 7 )  t o  produce 

Thus t h e  error t e r m  i s  t h e  product  of t h e  c o e f f i c i e n t  of c o r r e l a -  
t i o n  between d e n s i t y  and temperature ,  and of t h e  c o e f f i c i e n t s  of 
v a r i a t i o n *  of t h e s e  two p r o p e r t i e s .  The s i g n  of t h e  c o r r e c t i o n  
t e r m  i s  determined by t h e  s i g n  of t h e  c o r r e l a t i o n  c o e f f i c i e n t  
s i n c e  t h e  o t h e r  two q u a n t i t i e s  are always p o s i t i v e .  

*The c o e f f i c i e n t  of v a r i a t i o n  i s  de f ined  as t h e  r a t i o  of t h e  
s t anda rd  d e v i a t i o n  t o  t h e  mean value.  

3 
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Another model r e l a t i n g  s t a t i s t i c a l  p r o p e r t i e s  of atmospheric 
thermodynamic v a r i a b l e s  uses  t h e  h y d r o s t a t i c  equat ion  as i t s  p r i -  
mary b a s i s .  The s t anda rd  form of t h e  h y d r o s t a t i c  equat ioq  i s  

92 = -g.p -a  z 

where g i s  t h e  a c c e l e r a t i o n  of  g r a v i t y  and z i s  geometric a l t i t u d e .  
I t  fol lows from Eqs. ( 2 )  and (3)  t h a t  t h e  h y d r o s t a t i c  equat ion  
a l s o  may be expressed a s :  

I 

4 

From t h e  b a s i c  s t a t i s t i c a l  d e f i n i t i o n  of  t h e  s tandard  d e v i a t i o n ,  
w e  have 

D i f f e r e n t i a t i n g  both s i d e s  of t h i s  equat ion  with r e s p e c t  t o  z 
produces 

S u b s t i t u t i n g  Eq. (11) i n t o  t h e  r i g h t  s i d e  of (13) y i e l d s  

where g may be considered cons t an t  f o r  a given l a t i t u d e  and given 
he ight* .  
c i e n t ,  t h i s  equat ion  can be expressed f i n a l l y  i n  t h e  form 

By means of t h e  d e f i n i t i o n  of t h e  c o r r e l a t i o n  c o e f f i -  

where a{p) i s  t h e  s tandard  d e v i a t i o n  of  d e n s i t y  as before ,  and 
r {p,p)  i s  t h e  c o r r e l a t i o n  c o e f f i c i e n t  between p res su re  and 
dens i ty .  

*These r e s t r i c t i o n s  could be removed by using geopo ten t f a l ,  H ,  
r a t h e r  than  t h e  geometric h e i g h t ,  z .  This was no t  done i n  
t h e  p re sen t  s tudy.  
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This is the expression derived by Buell (ref. 9) for the vertical 
gradient of the standard deviation of pressure at a constant 
height. 
(ref. 10) for the vertical gradient of the standard deviation of 
height on a constant pressure surface. 

It is analogous to an expression derived by Stidd 

The validity of Eqs. (6) and (15) was examined for the 30 
to 200 km region of the atmosphere by Minzner and Morgenstern 
(ref. 11). The data collected for this purpose consisted of 437 
upper-air soundings covering the period 1947 to early 1965. 
These basic data were collected from 48 different sources in- 
cluding journal articles, institutional reports, and private 
communications. The data sample includes a variety of measure- 
ment techniques (falling-sphere, search-light probe, rocket- 
grenade, Pitot-static probe, etc.), and covers a world-wide dis- 
tribution of 25 launch sites. The data set is considered to be 
a unique collection of upper-air soundings; it has been published 
in a separate technical report by Minzner, Morgenstern, and 
Mello (ref. 12). 

A 

The 437 soundings were stratified into quasi-homogeneous 
groups by a diurnal, seasonal, and latitudinal classification 
scheme. The samples within each of these subsets were used to 
validate the two statistical models, and disclose any observed 
time and/or space variations in the results. 

The model for the gas law was tested by evaluating the per- 
centage contribution of the covariance-correction term to the 
total mean pressure (see Eq. (8)). This quantity was calculated 
at integral kilometer altitudes for each of the diurnal-seasonal- 
latitudinal subsets of the data. The results were presented as 
an extensive set of l l O \  machine-plotted graphs (ref. 11) . 

The model based on the hydrostatic equation was tested by 
evaluating the expression: 

2 aa{ I - [-g-a~p)-r{p,p)l 
(16) az 

aa.ip) 
az 

percentage difference = 100 ~ 

The statistical quantities a{p), a l p ) ,  and r{p,p) were calculated 
at integral kilometer altitudes for each of the diurnal-seasonal- 
latitudinal data subsets. The value of aa{p)/az was calculated 
using Stirling's central-difference formula (ref. 13) for 
numerical differentiation: 

! 
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where Az is  t h e  a l t i t u d e  increment between success ive  p o i n t s  ( i n  
t h i s  case1 km), and f { z i )  i s  t h e  va lue  of a{p) a t  i a l t i t u d e  in -  
crements removed f r o m  t he  c e n t r a l  value.  A minimum of t h r e e  
p o i n t s  (one p o i n t  on e i ther  side of the  c e n t r a l  va lue)  and a 
maximum of f i v e  p o i n t s  ( t w o  p o i n t s  on e i t h e r  s i d e  of the c e n t r a l  
va lue)  w e r e  used t o  e v a l u a t e  t h e  d e r i v a t i v e .  The r e s u l t s  of t h e  
eva lua t ion  of Eq. 
machine-plotted graphs ( r e f .  11) . (16)  a l s o  have been presented  as a set of 110  

11. DISCUSSION O F  FUZSULTS FROM THE GAS LAW MODEL 

V a r i a b i l i t y  of t h e  Covariance Term i n  the  Gas L a w  Model 

T h e  graphs presented  by Minzner and Morgenstern (ref.  11) 

A more comprehensive review of  the  c a l c u l a t i o n s  
are accompanied by a pre l iminary  d i scuss ion  of t h e  p h y s i c a l  
imp l i ca t ions .  
and g r a p h i c a l  r e s u l t s  descr ibed  previous ly  has  been conducted 
subsequent t o  the  o r i g i n a l  pub l i ca t ion .  
a n a l y s i s  are summarized below i n  terms of observed s i g n i f i c a n t  
t i m e  and space v a r i a t i o n s .  

The r e s u l t s  of t h i s  

1. Se igh t  Var i a t ions  
a. Between 30 and 6 0  k m ,  t h e  magnitude of t h e  c o r r e c t i o n  

term i s  usua l ly  much less than  1 p e r c e n t ,  and only 
r a r e l y  exceeds 0 . 1  pe rcen t  ( t o  about 0 .5  p e r c e n t ) .  

b. The magnitude of  t he  c o r r e c t i o n  term tends  t o  be g r e a t e r  
for  a l t i t u d e s  between 6 0  and 115 k m  than for  a l t i t u d e s  
below 60 k m ,  b u t  i t s  value i s  s t i l l  usua l ly  small  com- 
pared w i t h  1 pe rcen t  f o r  most of t h e  s t r a t i f i e d  d a t a  
sets. The number of d a t a  cells  f o r  which t h e  va lues  of 
t h e  c o r r e c t i o n  term exceed 1 percen t  f o r  s h o r t  a l t i t u d e  
i n t e r v a l s  i n c r e a s e s  w i t h  decreas ing  sample s i z e  a t  t h e  
h ighe r  a l t i t u d e s .  To i n c r e a s e  the sample s i z e  a t  these 
a l t i t u d e s ,  t h e  d a t a  i n  d i f f e r e n t  l a t i t u d e  b e l t s  w e r e  
combined i n t o  a s i n g l e  subset. Combining these data 
in t roduces  g r e a t e r  he t e rogene i ty  i n t o  t h e  sample, re- 
s u l t i n g  i n  increased  cor rec t ion- te rm va lues  which grow 
t o  as much a s  2 o r  3 percen t  e s p e c i a l l y  above 90 km.  
(Only for  those  d a t a  cel ls  which p r e s e n t  grouping of 
subsets a c r o s s  l a t i t u d e  bands i s  t h e  sample s i z e  a s  
l a r g e  a s  9 o r  more above 9 0  km.*) 

c. A l l  t h e  data w e r e  grouped i n t o  a s i n g l e  d a t a  set  t o  pro- 
v ide  a sample s i z e  of  9 o r  more extending above 115 km.  

~~ 

*A minimum sample s i z e  of 9 soundings was considered necessary 
t o  provide s i g n i f i c a n t  r e s u l t s .  
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I n  t h i s  case  t h e  value of  t h e  c o r r e c t i o n  t e r m  increased  
t o  5 pe rcen t  between 1 1 5  and 155 km, whereas above t h i s  
region i t s  va lue  increased  t o  as much as 25 pe rcen t  a t  
210 km. 

2. L a t i t u d i n a l  Var i a t ions  
a. 

b. 

C.  

For t h e  a l t i t u d e  reg ion  30 t o ' 6 0  km, t h e  value of  t h e  
c o r r e c t i o n  t e r m  tends  t o  i n c r e a s e  wi th  i n c r e a s i n g  l a t i -  
tude.  For t h e  b a s i c  homogeneous d a t a  ce l l s ,  t h i s  i n -  
c r e a s e  v a r i e s  from 5 0 . 1  pe rcen t  i n  t h e  t r o p i c s  t o  
- < 0.5 pe rcen t  i n  t h e  a r c t i c .  
For d a t a  cel ls  combined across seasons and d i u r n a l  
pe r iods ,  t h e  increased  he te rogene i ty  r e s u l t i n g  from t h e s e  
compressions causes  t h e  va lue  of  t h e  c o r r e c t i o n  term t o  
i n c r e a s e  from 0 . 1  pe rcen t  o r  less i n  t h e  a l t i t u d e  region 
of 30 t o  6 0  k m  i n  t h e  t r o p i c s  t o  va lues  a s  g r e a t  as 
2 pe rcen t  f o r  t h e  same a l t i t u d e  reg ion  i n  t h e  a r c t i c .  
I n  t h e  a l t i t u d e  reg ion  of 6 0  t o  1 0 0  k m ,  t h e  t r e n d  i s  n o t  
so d i s t i n c t  s i n c e  t h e  number of a v a i l a b l e  d a t a  sets i s  
cons iderably  less. The v a r i a t i o n  s e e m s  t o  be from va lues  
- < 0.7  pe rcen t  i n  t h e  t r o p i c s  t o  < 3.8 pe rcen t  i n  t h e  m i d -  
l a t i t u d e  and s u b a r c t i c  b e l t s .  No arc t ic  va lues  are 
a v a i l a b l e  a t  t h e s e  a l t i t u d e s .  

3 .  Seasonal Var i a t ions  
a .  I n  t h e  high l a t i t u d e s ,  a s t r o n g  seasonal  v a r i a b i l i t y  i s  

seen whereby t h e  va lue  of t h e  c o r r e c t i o n  t e r m  t ends  t o  
i n c r e a s e  from < 0 . 1  pe rcen t  i n  summer t o  < 1 . 4  percent  
i n  w i n t e r ,  i n  t h e  a l t i t u d e  reg ion  of 30 t u  80  km.  

b. N o  s i g n i f i c a n t  t r e n d  i n  t h e  v a r i a b i l i t y  of t h e  value of 
t h e  c o r r e c t i o n  t e r m  a s  a func t ion  of season has been 
noted i n  t h e  low and middle l a t i t u d e s ,  where t h e  value 
tends  t o  remain < 0 . 1  percent  f o r  t h e  same a l t i t u d e  
region.  

- 

4 .  Diurnal  Var i a t ions  
a. Because of a lack  of  s u f f i c i e n t  numbers of comparable day 

and n i g h t  data, no d e f i n i t e  t r e n d  can be s a i d  t o  have 
been detected i n  t h e  v a r i a b i l i t y  of  t h e  c o r r e c t i o n  term 
a s  a func t ion  of  d i u r n a l  per iod .  Only i n  t h e  sub t rop i -  
c a l  summer data could such a comparison be made. This 
s i n g l e  comparison suggested a s l i g h t l y  l a r g e r  value of 
c o r r e c t i o n  term f o r  n ight t ime d a t a  than f o r  daytime da ta .  
When using d a t a  cel ls  f o r  which t h e r e  has  been a group- 
i n g  ac ross  seasons,  t h e  va lue  of t h e  c o r r e c t i o n  term for 
t r o p i c a l ,  daytime d a t a  showed no s i g n i f i c a n t  d i f f e r e n c e  
from t h a t  f o r  t r o p i c a l  n ight t ime d a t a .  The s u b t r o p i c a l  

b. 
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d a t a  combined a c r o s s  seasons r e f l e c t e d  t h e  same d i u r n a l  
d i f f e r e n c e s  p rev ious ly  d iscussed  f o r  t h e  ungrouped 
s u m m e r t i m e  d a t a  f o r  t h a t  l a t i t u d e .  N o  s i m i l a r  compari- 
sons of s easona l ly  grouped day and n i g h t  d a t a  w e r e  poss i -  
b l e  f o r  t h e  o t h e r  l a t i t u d e  b e l t s  because of i n s u f f i c i e n t  
d a t a .  

c. For grouping a c r o s s  both season and l a t i t u d e ,  t h e  va lue  
of  t h e  c o r r e c t i o n  term f o r  a l t i t u d e s  below 90 km i s  
s l i g h t l y  l a r g e r  f o r  t h e  n ight t ime d a t a  than  f o r  t h e  day- 

percent .  
t i m e  d a t a ;  i . e . ,  < 1 . 0  pe rcen t  compared with < 0.5 '1 - - 

Y 
The observed t i m e  and space v a r i a t i o n s  summarized above are 

based on a n a l y s i s  of t h e  g r o s s  f e a t u r e s  of t h e  numerical  r e s u l t s .  
Within smal le r  a l t i t u d e  r eg ions ,  va lues  f o r  the c o r r e c t i o n  term 
showed one o r  m o r e  random negat ive  excurs ions  which a r e  l a r g e  
compared wi th  t h e  remainder of  t h a t  p o r t i o n  of  t h e  graph(. A 
p a r t i c u l a r  case i n  p o i n t  i s  t h a t  i l l u s t r a t e d  by t h e  graph f o r  t h e  
t r o p i c a l ,  summer, diurnal-mean d a t a  ce l l  (see Figure 1). Sharp 
negat ive  excursions of t h e  cor rec t ion- te rm value t o  -0 .4 ,  - 1 . 4 ,  
and -2 .4  percent  a r e  seen t o  e x i s t  a t  51 , 58, and 68 km, re- 
s p e c t i v e l y ,  whereas i n  t h e  remainder of t h e  a l t i t u d e  reg ion  
between 35 and 65 km t h e  term has va lues  of 5 0 . 1  pe rcen t .  These 
appear t o  be t h e  r e s u l t  o f  spur ious  d e n s i t y  va lues  a t  i s o l a t e d  
a l t i t u d e s  and a r e  most ev iden t  i n  d a t a  cel ls  of small  sample 
s i z e .  Consequently, t h e s e  excurs ions  have been l a r g e l y  d i s r e -  
garded i n  t h e  search  f o r  gene ra l  t r e n d s .  

Analysis  of t h e  Covariance T e r m  

For a b e t t e r  understanding of t h e  f a c t o r s  i n f luenc ing  t h e  
v a r i a b i l i t y  of  t h e  covariance term, it i s  convenient t o  review 
t h e  second term of  t h e  bracketed f a c t o r  i n  Eq. ( 9 ) .  Of t h e  t h r e e  
f a c t o r s  i n  t h i s  express ion ,  t h e  r a t i o  o{p ) /E  as w e l l  as t h a t  o f  
o{T}/? vary only slowly wi th  a l t i t u d e .  These two r a t i o s  have 
values  which are g r e a t e r  than zero and less than  +1.0 f o r  a l l  
cases considered.  The value of r { p , T }  by d e f i n i t i o n  may never 
exceed t h e  range of -1.0 t o  +1.0. The s i g n  of t h e  t r i p l e  product  
i s  determined by t h e  s i g n  of  r { p , T ) ,  and t h e  e n t i r e  term vanishes  
when r { p , T )  passes  through zero.  

A more d e t a i l e d  review of t h e  computed, b u t  unplo t ted  va lues  
of a { p } / p  and o{T),/?, shows t h a t  both q u a n t i t i e s  tend t o  inc rease  
with a l t i t u d e .  The f i r s t  q u a n t i t y  ranges from ab l i t t l e  as 0.05 
o r  less a t  30 km t o  0.5 o r  more a t  200 Km. The second ranges from 
as l i t t l e  a s  0 .02  o r  less a t  30 Km t o  0 . 4  OL more a t  200  km. 
Such changes with a l t i t u d e  are r e a d i l y  expla ined  by a combination 
of g r e a t e r  re la t ive v a r i a b i l i t y  i n  t h e i r  parameters and increased  
measurement u n c e r t a i n t y  of both p and T with inc reas ing  a l t i t u d e .  

(i 
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A t  any p a r t i c u l a r  a l t i t u d e ,  t h e  va lues  o f  bo th  r a t i o s  tend  t o  be 
s m a l l e r  f o r  homogeneous data than f o r  heterogeneous data; i .e. ,  
smaller  f o r  data a s s o c i a t e d  wi th  a s i n g l e  l a t i t u d e  band, a s i n g l e  
season,  and a s i n g l e  d i u r n a l  pe r iod  than  f o r  d a t a  which have n o t  
been segrega ted  according t o  t h e s e  var iables . .  Because o f  t h e s e  
v a r i a t i o n s  i n  t h e  va lues  of t h e  two r a t i o s ,  w e  might expec t  t o  
f i n d  the va lues  of t h e  covariance o r  c o r r e c t i o n  term t o  i n c r e a s e  
r a t h e r  uniformly wi th  i n c r e a s i n g  a l t i t u d e  and wi th  i n c r e a s i n g  
he terogenei ty  of  o t h e r  cond i t ions  of  observa t ion ,  provided t h a t  

. t h e  value of  r { p , T )  w e r e  cons tan t .  The f a c t  t h a t  t h e  value of 
t h e  c o r r e c t i o n  term does n o t  i n c r e a s e  uniformly wi th  a l t i t u d e  i s  1 

due t o  a number of factors: 

1. T h e  value of  a { p } / E  does n o t  i n c r e a s e  smoothly wi th  4 
i nc reas ing  a l t i t u d e .  Spurious va lues  o f  d e n s i t y  i n c r e a s e  
t h e  value of  o { p }  t o  a much g r e a t e r  e x t e n t  than  they  
in f luence  t h e  value of p .  Hence,. p a r t i c u l a r  a l t i t u d e s  
o r  l i m i t e d  a l t i t u d e  reg ions  occas iona l ly  have abnormally 
l a r g e  va lues  of a{p} /p .  

2 .  momalous measured va lues  of  p a t  one a l t i t u d e  produce 
a s s o c i a t e d  spur ious  computed va lues  of T a t  another  
a l t i t u d e .  Thus, a l a r g e  value f o r  a{T}/!!? a t  a given 
a l t i t u d e  may be a consequence of a l a r g e  value of o { p } / p  
a t  another  a l t i t u d e .  

3 .  I n  a d d i t i o n ,  s i n c e  s i n g l e  observa t ions  o f  p and T a t  any 
a l t i t u d e  are related by t h e  gas  l a w ,  a spu r ious ly  l a r g e  
value of  p w i l l  have an a s soc ia t ed  spur ious ly  s m a l l  value 
of T ,  a t  t h a t  a l t i t u d e .  The converse a l s o  a p p l i e s .  This  
s i t u a t i o n  enhances t h e  genera t ion  of t h e  nega t ive  va lue  
of r { p , T )  a t  the same a l t i t u d e ,  and t h i s  value of  r { p , T )  
tends t o  o v e r r i d e  the va lue  which would o therwise  be 
a s soc ia t ed  wi th  t h a t  a l t i t u d e  region.  

t h a t  var ious  f a c t o r s  cause t h e  value of  r { p , T )  t o  vary 
i n  a somewhat sys temat ic  manner with a l t i t u d e ,  l a t i t u d e ,  
and poss ib ly  wi th  season. I t  i s  s u f f i c i e n t  t o  i n d i c a t e  
a t  t h i s  p o i n t ,  however, t h a t  r { p , T }  i s  f a r  from being 
cons tan t .  

4 .  I n v e s t i g a t i o n s  beyond t h e  scope o f  t h i s  s tudy sugges t  

The r e l a t i v e  in f luence  of  t h e  f a c t o r s  u{p } /F ,  o{T)/?, and 
r { p , T )  on t h e  va lues  of  t h e  c o r r e c t i o n  term dep ic t ed  i n  Figure 1 
are i l l u s t r a t e d  i n  F igure  2 .  I t  i s  apparent  t h a t  t h e  t r i p l e  pro- 
duc t  of  t h e  t h r e e  f a c t o r s  and t h e  i m p l i c i t  r e l a t i o n s h i p s  are such 
t h a t  spur ious  l o c a l  va lues  of  d e n s i t y  produce s t r o n g  negat ive  t 

values  i n  t h e  a l t i t u d e  p r o f i l e  of t h e  value of  t h e  c o r r e c t i o n  
t e r m .  Assuming t h a t  such spur ious  d e n s i t y  va lues  are n o t  t r u l y  
c h a r a c t e r i s t i c  of  t h e  atmosphere b u t  merely r e p r e s e n t  sampling 
f l u c t u a t i o n s ,  it appears  reasonable  t o  d i s r e g a r d  such random ex- 
curs ions  i n  t h e  graphs of  t h e  a l t i t u d e  dependence o f  t h e  co r rec -  
t i o n  term. 

b 

10 



SAMPLE SIZE 

3 II 1 1 1 2 1 2 1 2 1 2 9  8 9 8 9 9 8 6 
I 1  1 1  1 1  1 1  1 1 -  

_ _ ~ _  

0 2  - 

30 40 50 60 70 80 90 100 

ALTITUDE ( k m )  

Figure 2 . -  A l t i t u d e  p r o f i l e s  f o r  t h e  c o r r e c t i o n  t e r m  
value and each o f  t h e  t h r e e  f a c t o r s  which 
c o n t r i b u t e  t o  t h i s  value a s  determined f o r  
t h e  t r o p i c a l ,  summer, and diurnal-mean 
d a t a  ce l l  

Summary of t h e  Analysis  of  t h e  Gas -Law Model 

I n  summation it appears t h a t  t h e  abso lu te  magnitude of t h e  
4 c o r r e c t i o n  t e r m  of t h e  s t a t i s t i c a l  form of t h e  gas l a w  i n c r e a s e s  

wi th  i n c r e a s i n g  a l t i t u d e  and wi th  i n c r e a s i n g  l a t i t u d e ,  b u t  gener- 
a l l y  it remains below 1 pe rcen t  f o r  a l t i t u d e s  below 80 t o  90  km, 
when a s i g n i f i c a n t  sample s i z e  e x i s t s .  The value of t h e  correc- 
t i o n  t e r m  s e e m s  t o  be g r e a t e r  i n  t h e  win te r  than i n  t h e  summer 
f o r  h i g h - l a t i t u d e  data, b u t  no such v a r i a t i o n  is seen for low- 
l a t i t u d e  d a t a .  T i m e  of day does n o t  appear t o  in f luence  s t r o n g l y  
t h e  value of t h e  c o r r e c t i o n  term i n  ou r  l i m i t e d  d a t a  sample. 
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Over broad h e i g h t  i n t e r v a l s  below 60 or 70 km t h e  co r rec t ion -  
term values  for homogeneous d a t a  remain nea r  0 . 1  percent .  This  
va lue  i s  s i m i l a r  t o  t h a t  r epor t ed  by Wood and Spreen (ref.  1 4 )  
f o r  homogeneous data at a l t i t u d e s  below 30 km. 

For m o s t  model-atmosphere requirements a t  a l t i t u d e s  below 
1 2 0  km, t h e  va lue  of t h e  c o r r e c t i o n  t e r m  which should be  
app l i ed  i n  computing mean p res su re  i s  u s u a l l y  s m a l l  compared with 
o t h e r  u n c e r t a i n t i e s  i n  t h e  models, and t h e  a p p l i c a t i o n  of t h i s  
c o r r e c t i o n  t e r m  may be omitted.  Consequently, f o r  a l t i t u d e s  
below 1 2 0  km, t h e  procedure commonly used t o  develop model 
atmospheres appears t o  be a v a l i d  one. Soph i s t i ca t ed  models 
based on observed d a t a ,  however, might w e l l  be based on ca lcu-  
l a t i o n s  which inc lude  such a c o r r e c t i o n  term, p a r t i c u l a r l y  f o r  
a l t i t u d e s  above 1 2 0  km. 

.( 

; 

111. D I S C U S S I O N  O F  RESULTS FOR THE STATISTICAL FORM 
OF THE HYDROSTATIC EQUATION 

Descr ip t ion  of  t h e  Graphical Data 

The v a l i d i t y  of t h e  s t a t i s t i c a l  model (Eq. 15)  as  appl ied  t o  
numerical d a t a  w a s  determined by eva lua t ing  Eq. ( 1 6 ) .  This  
q u a n t i t y  w a s  found t o  be h ighly  v a r i a b l e  wi th  changes of one o r  
two o rde r s  of magnitude between ad jacen t  va lues  accompanied by 
f requent  change of s ign .  The unconnected d o t s  i n  F igure  3 i l l u s -  
t r a t e  t h i s  v a r i a b i l i t y  f o r  a t y p i c a l  d a t a  ce l l .  This  func t ion  i s  
a s soc ia t ed  with t h e  l e f t  o rd ina te  of t h e  graph which i s  des igna ted  
PERCENT DIFFERENCE. Any computed va lues  beyond t h e  i n d i c a t e d  
range of t h e  o r d i n a t e ,  +lo0 percen t ,  have been t runca ted  a t  t hose  
l i m i t s  i n  t h e  p l o t t i n g  procedure.  

To improve t h e  r e a d a b i l i t y  of t h i s  and s i m i l a r  g raphs ,  only 
an envelope of t h e  success ive  maxima and minima of t h e  percent  
d i f f e r e n c e  w a s  p l o t t e d  as  a func t ion  of a l t i t u d e .  The graph of 
such an envelope f o r  t h e  s a m e  d a t a  ce l l  depic ted  i n  F igure  3 i s  
represented  by t h e  p a i r  of d o t t e d  curves i n  Figure 4 .  

The series of + s i g n s  i n  each of F igures  3 and 4 r e p r e s e n t  
t h e  graph of a{p) as a func t ion  of a l t i t u d e .  The o r d i n a t e  f o r  
t h i s  graph i s  given a t  t h e  right-hand side of t h e  f i  u re .  The 
scale i s  logar i thmic  over t h e  range 102 t o  10-4 nt/m3 and t h e  
gene ra l  l i n e a r i t y  of t h e  curve shows t h e  near  exponent ia l  he igh t  
dependence of t h e  s ta t is t ic .  
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I n t e r p r e t a t i o n  of  t h e  Percent  Di f fe rence  V a l i d i t y  Yest 

A review of t h e  r e s u l t s  given i n  F igure  4 and i n  t h e  many 
s i m i l a r  graphs dep ic t ing  t h e  s a m e  m o d e l  €or  o t h e r  d a t a  sets,as 
presented by Minzner and Morgenstern ( r e f .  11) sugges ts  t h a t  t h e  
agreement between t h e  t w o  s i d e s  of t h e  s t a t i s t i c a l  model i s  
r a t h e r  poor. The t r u n c a t i o n  procedure used i n  t h e  p repa ra t ion  
of t h e s e  graphs i s  such t h a t  i n  many i n s t a n c e s  t h e  t r u e  d i f f e r -  
ence i s  g r e a t e r  than  t h e  graphs suggest .  H o w e v e r ,  it should be 
noted t h a t  t h e  g r e a t e s t  depar tures  occur  i n  t h e  regions where 

agreement wi th  t h e  model. I n  h e i g h t  reg ions  where t h e  p r o f i l e  of 
a{p} i s  nea r ly  l i n e a r  on t h i s  graph, i . e . ,  t h e  d e r i v a t i v e  i s  
nea r ly  cons t an t  such as t h e  4 5  t o  60 km i n t e r v a l ,  t h e  agreement 
i s  much more favorable .  

v idua l  terms i n  t h i s  model i s  shown by t h e  curves i n  Figure 5 .  
The crosses rep resen t  t h e  va lues  of t h e  d e r i v a t i v e  on a l o g a r i -  
thmic s c a l e *  while  t h e  s o l i d  l i n e  i n  Figure 5 r ep resen t s  t h e  
va lues  of t h e  right-hand s i d e  of Eq .  ( 1 5 ) .  A v i s u a l  comparison 
of t h e s e  curves shows t h e  g r e a t e r  v a r i a b i l i t y  i n  t h e  d e r i v a t i v e  
t e r m .  However, both curves are reasonably smooth and i n  r e l a t i v e  
agreement over  t h a t  p o r t i o n  of t h e  a l t i t u d e  range f o r  which t h e  
sample s i z e  exceeds 20 .  

The in f luence  of g r e a t e r  sample s i z e  i s  i l l u s t r a t e d  by t h e  
r e s u l t s  shown i n  Figure 6 f o r  a more populous d a t a  ce l l .  The 
region o f  reasonably good agreement extends over a much l a r g e r  
a l t i t u d e  i n t e r v a l  i n  t h i s  i n s t a n c e  than  i n  Figure 5.  S o m e  rela- 
t i v e l y  l a r g e  d i f f e r e n c e s  are observed i n  Figure 6 ,  p r imar i ly  i n  
t h e  reg ion  of r a p i d  decrease of sample s i z e ,  and one p o s i t i v e  
value of t h e  d e r i v a t i v e  i s  found i n  t h e  s a m e  region. 

r ep resen t s  a very smooth func t ion  of a l t i t u d e .  The d e r i v a t i v e  
t e r m  i s  h ighly  s e n s i t i v e  t o  l o c a l  changes i n  s lope  of t h e  a (p}  
p r o f i l e  produced by measurement u n c e r t a i n t i e s  i n  t h e  data.  This  
sugges ts  t h a t  f u r t h e r  smoothing of t h e  d a t a  i s  d e s i r a b l e  f o r  
eva lua t ion  of t h e  d i f f e r e n t i a l - e q u a t i o n  model i n  t h e  form of 
E q .  (15). Sect ion  I V  con ta ins  a d e s c r i p t i o n  of an a l t e r n a t e  f o r m  
of t h e  model which provides  i m p l i c i t  smoothing of t h e  d a t a .  

t t h e  curve of  a{p} shows r a p i d  changes of s lope ,  r e s u l t i n g  i n  poor 

i 

A be t te r  i n d i c a t i o n  of t h e  r e l a t i v e  smoothness of t h e  i n d i -  

F igures  5 and 6 both show t h a t  n e i t h e r  s i d e  of Eq. (15)  

- -- -. 
\ 

*Because a f p }  i s  a decreas ing  func t ion  wi th  a l t i t u d e ,  t h e  de r iva -  
t i v e  gene ra l ly  i s  negat ive .  Hence t h e  abso lu te  va lues  have 
been p l o t t e d .  
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Figure 5.- A l t i t u d e  p r o f i l e s  of t h e  r i g h t  and l e f t  sides 
of Eq. (15)  evaluated f o r  t h e  t r o p i c a l ,  autumn, 
diurnal-mean data  c e l l  

Summary on t h e  Degree of V a l i d i t y  

The a n a l y s i s  of t h i s  model sugges ts  khat  t h e  number of 
soundings a v a i l a b l e  f o r  use i n  t h e  c u r r e n t  s tudy gene ra l ly  i s  
inadequate t o  e s t a b l i s h  t h e  v a l i d i t y  of t h e  model. This  i s  a 
consequence of t h e  s e n s i t i v i t y  of t h e  s t a t i s t i c a l  v a r i a b l e s  t o  
sampling f l u c t u a t i o n s  i n  t h e  d a t a .  The model y i e l d s  t h e  b e s t  
r e s u l t s  fo r  those  a l t i t u d e  reg ions  conta in ing  t h e  l a r g e s t  sample 
s i z e s .  
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I V .  REVISION O F  STATISTICAL HYDROSTATIC EQUATION MODEL 

I The r e s u l t s  of t h e  previous s e c t i o n  have shown t h a t  t h e  

sampling f l u c t u a t i o n s  of t h e  meteorological  v a r i a b l e s .  The 
nea r ly  oppos i te  c h a r a c t e r  of d i f f e r e n t i a t i o n  and i n t e g r a t i o n  
sugges ts  t h a t  an i n t e g r a l  form of t h e  hydros ta t ic -equat ion  model 
may be developed t o  overcome t h e  l i m i t a t i o n s  of t h e  d i f f e r e n t i a l  
form. Equation (15)  can be i n t e g r a t e d  wi th  r e s p e c t  t o  a l t i t u d e  
t o  y i e l d  

I s t a t i s t i c a l  model of Eq. (15)  i s  h ighly  s e n s i t i v e  t o  random 
I 

i! 
f Z  

where t h e  s u b s c r i p t  (o) r e f e r s  t o  t h e  uppermost a l t i t u d e  of t h e  
he igh t  i n t e r v a l  of  i n t e g r a t i o n .  The q u a n t i t y  o{pl0 i s  t h e  s tand-  
a r d  dev ia t ion  of  p re s su re  a t  h e i g h t  zo. This model can be s impl i -  
f i e d  f u r t h e r  i f  t h e  a c c e l e r a t i o n  of g r a v i t y  i s  assumed t o  be con- 
s t a n t .  The v a l i d i t y  of  t h i s  assumption i s  examined i n  g r e a t e r  
d e t a i l  i n  Sec t ion  V where i t  i s  e s t a b l i s h e d  t h a t  t h e  r e s u l t i n g  
e r ror  i s  n o t  s i g n i f i c a n t .  

Equation (18 )  wi th  (9)  assumed cons t an t  may be eva lua ted  by 
use o f  an appropr i a t e  numerical  i n t e g r a t i o n  technique. Because 
o { p )  i s  nea r ly  an exponent ia l  func t ion  of he igh t ,  a logar i thmic  
i n t e g r a t i o n  formula i s  d e s i r a b l e .  Minzner ( r e f .  15 )  has t e s t e d  
s e v e r a l  simple i n t e g r a t i o n  techniques on atmospheric v a r i a b l e s  
and found t h a t  t h e  logar i thmic  t r apezo ida l  r u l e  y ie lded  satis-  
f a c t o r y  r e s u l t s  when app l i ed  t o  d e n s i t y  p r o f i l e s .  Applicat ion of  
t h i s  r u l e  t o  Eq. ( 1 8 )  produces 

where 

and t h e  s u b s c r i p t  (i) r e f e r s  t o  t h e  number of i n t e g e r  k i lometer  
increments below zo .  A m o r e  d e t a i l e d  d i scuss ion  of  t h i s  i n t eg ra -  
t i o n  method i s  given i n  Appendix A of t h i s  r e p o r t .  

1 

4 Equation (18)  as approximated by Eq. ( 1 9 )  w a s  eva lua ted  
numerically wi th  t h e  same set of d a t a  used t o  develop Figure  6 .  
The observed va lue  of a{p) a t  zo i s  used as an est imate  of 
d p l  
of cs?i>; as der ived  €or t h e  right-hand express ion  i s  d i s -  

The e f f e c t  of sampling errors i n  o{p), on t h e  va lues  
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cussed further in Appendix A .  A comparison curve, the altitude 
profile of a{p) was calculated directly from observed values of 
atmospheric pressure. Figure 7 shows the results of these com- 
putations. These curves are significantly smoother than the 
results from the differential-equation model shown in Figure 6. 
A comparison of the two curves in Figure 7 shows that the dif- 
ferences are smaller than in Figure 6, and now tend to be sys- 
tematic in character. The discontinuities still exhibited by 
these curves generally are associated with sharp changes in the 
sample size of the data set. 

J 
The validity of this model can be examined in a manner simi- 

\ lar to that used for the differential-equation model, namely: 

(The direction of the difference in %he numerator of E q .  ( 2 0 )  has 
been reversed to be consistent with the implicit signs in Eq. 
(16) introduced by negative slopes.) The altitude profile of 
Eq. ( 2 0 )  for the same set of data used in Figures 6 and 7 is 
shown by the dashed curve in Figure 8. The percent difference 
in this graph shows a maximum of 60 percent error with large 
segments of the profile indicating less than a 15 percent 
difference. A direct comparison of these results with those for 
the differential equation model also is provided by the solid 
curve in Figure 8. The departures in this latter case are seen 
to be substantially greater. It is apparent that the integral 
version of the model provides a more suitable basis than the 
differential model for investigating the existence of latitudinal, 
seasonal, or diurnal variations in the validity of the statistical 
model. 

V. CONCLUSIONS 

The objective of this study has been to evaluate the 
validity of two models for relating the statistics of atmospheric 
pressure, temperature, and density. These models were applied to 
data assembled from 437 upper-air soundings for the region 30 to 
200 km. The results of these calculations showed that the 
covariance term of Eq. (7) was generally in the range k1.0  per- 
cent of the mean pressure for the altitudes 30 to 60 km. In this 
height interval the covariance was largest at upper altitudes, 
in arctic latitudes, and during winter months. Above 60 km the 
covariance term exceeded k 1  percent in many cases but these 
results are less reliable because of the more limited number of 
sounding available for analysis, particularly at the higher 

il 
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latitudes. Because of a lack of sufficient comparable day and 
night data, no definite trend can be said to have been detected 
in the variability of the covariance term as a function of the 
diurnal period. 

The analysis of the model given by Eq. (15) suggests that 
the number of soundings available for use in the current study 
generally is inadequate to establish the validity of the model. 
This is a consequence of the sensitivity of the statistical 

(. variables to sampling fluctuations in the data. The model yields 
the best results for those altitude regions containing the largest 
sample sizes. Because of these limitations, a revision of the 

c basic model has been proposed changing it from a differential 
equation into an integral form. The revised model was evaluated 
for a single case by means of a logarithmic trapezoidal integra- 
tion scheme. A comparison of these results with those from the 
original model suggests that the integral form provides a more 
suitable basis for future investigations of the existence of 
latitudinal, seasonal, or diurnal variations in the validity of 
the model. 

Gravity variations as a function of altitude and of latitude 
were considered in the initial processing of the individual 
soundings. In the subsequent analysis of the data, the results 
of many soundings were grouped according to geometric altitude 
both within a latitude band, and across latitude bands. This 
grouping at identical geometric altitudes across latitude bands 
is now seen to be a less desirable procedure, and has perhaps led 
to larger values of standard devitations of density and pressure 
than would have resulted if the data had been grouped according 
to equal values of geopotential (refs. 16, 17). 
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APPENDIX A 

NUMERICAL EVALUATION PROCEDURES 

The purpose of this appendix is to discuss qualitatively 
how the magnitude of the uncertainties in the model values for 
a{p) are influenced by the choices in each of two procedures 
in the evaluation of the expression: 

Y 0 / 

The first of these procedures is the numerical evaluation of 
the integral term by means of a quadrature formula. Several 
quadrature formulas were considered from which the logarithmic 
trapazoidal rule was selected as providing a satisfactory 
approximation to the actual integral. The merits of some 
alternate choices are discussed later. The uncertainty which 
would be introduced into the value of o{p) by selecting a less 
suitable quadrature formula is small, however, compared with 
the uncertainty introduced into a{p) by the observational 
uncertainties in a{p).r{p,p). 

An even greater uncertainty is introduced into a{p), 
however, by a poor choice in the second procedural item, i.e., 
that dealing with the direction of integrat*bn, upward or down- 
ward. It will be shown that only downward integration yields 
acceptable values of percent uncertainty over the entire region 
of integration, although upward integration as implied by 
Eq. (A-1) may, in some instances, be satisfactory for a very 
limited region at the lower end of the range of integration. 

With upward integration the model values of a{p) are 
determined as a small difference between two large quantities, 
an intuitively undesirable procedure. It will be shown that in 
such a situation, the percent uncertainty propagated into the 
difference o{p) is an ampZified weighted average of the percent 
uncertainties of both the terms comprising the difference. This 
propagated uncertainty in a{p) is never less than the percent 
uncertainty of the minuend, which is the integration constant, 
and grows without bounds as z increases.* 

With downward integration, however, the model values of 
a{p) are determined by a summation operation as in Eq. (A-2), 
which comes directly from Eq. (A-1): 

*Both lower-case and upper case forms of Z used interchangeably i n  this appendix 
signify geometric height. 
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In such an operation, it can be shown that the percent uncertainty 
in the sum, is a norma2 unamplified weighted average of the 
percent uncertainties of the addends, and consequently neuel' 
exceeds the percent uncertainty of the larger addend. This will 
be seen to be the integral term for all but the first few kilo- 
meters of the range of integration. 

The weighting feature operates so as to minimize the effect 
of the percent uncertainties of small quantities involved in the 
sums or differences, even when these small quantities have very 
large uncertainties. This feature is most apparent and partic- 
ularly beneficial in the summation representing downward integra- 
tion, where the magnitude of the constant of integration o{p), 
is very small compared with that of the integral term over most 
of the range of an extended integration, but where the percent 
uncertainty of a{p), is large compared with that of the integral 
term. This large percent uncertainty in the integration constant 
is effectively eliminated from the uncertainty in model values 
of a{p) by the weighting feature. 

Both the weighting and amplification features which will 
be demonstrated analytically in the next section, favor the 
downward direction of integration. This conclusion is readily 
substantiated from an analysis of the error expressions associated 
with each of Eqs. (A-1) and (A-2). 

ERROR ANALYSIS 

To simplify the form of the expressions showing the error 
propagation into o(p) within each of Eqs. (A-1) and (A-2), it 
is desirable to simplify the symbolic notation of the terms of 
these equations prior to writing the error expressions. Thus, 
the quantity being computed, a{p) ,  is changed to Q; the constant 
of integration a{p), is changed to C, and the entire integral 
term is designated by I. Then, using the Gaussian method we may 
relate the absolute Uncertainties 6Q, 6C, and 61 in Q, C, and I 
respectively, through partial derivatives as follows: 
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Because the variables C and I in Eqs. (A-1) and (A-2) appear 
only in the first power, in separate terms, and without 
coefficients, it follows that: 

6 Q  = d m  (A-4 1 

Designating percent uncertainties in Q, C, and I as P U Q ,  PUC, 
and PUI, it follows that: 

and 

These forms are equally correct when applied to the percent 
uncertainties of both Eqs. (A-1) and (A-2). The conversion 
of 6Q to a form involving PUQ, however, differs in the two 
cases, and we have: 

applicable to Eq. (A-l), and: 

(C+I) PUQ (A-8 1 6Q = Q - 6Q - - - 
Q 100 

applicable to Eq. (A-2). 

Combining Eqs. (A-4), (A-51, (A-6), and (A-7) into one equation, 
and then combining Eqs. (A-41, (A-51, (A-61, and (A-8) into 
another equation we obtain: 
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+Cl PUC1) L + (I1 PUI/ 
PUQ, = 

for upward integration, and: 

+c2 PUC,) L + (I2 PU12) 
PUQ, = 

(A-9 1 

(A-10) 

for downward integration. The subscript 1 added to the symbols 
Q, C, and 1 in Eq. (A-9) designates the particular values of 
these quantities applicable to Eq. (A-1) for upward integration. 
The subscript 2 employed similarly in Eq. (A-10) designates the 
particular values applicable to Eq. (A-2) for downward integration. 

NUMERICAL VALUES 

In order to investigate the error amplification as well as 
the weighting effects of Eqs. (A-9) and (A-10) with some degree 
of quantitativeness, it is necessary to have some reasonable 
estimates of the values of C1, C2, 11 and 12, as well as the uncertainties in C1 and C . These all follow from an estimate 
of the altitude profile og Q 3 o{p) and its uncertainty. 
values associated with the lower and upper ends of such a profile 
serve respectively as reasonable values for the constants C1 and 
C2 and their uncertainties. With these quantities we can derive 
estimates of the altitude profiles of 11 and I2 through the 
following relationships stemming directly from Eqs. (A-1) and 
(A- 2 ) re spec t ively : 

The 

I1 = C1 - Q (A-11) 

I2 = Q - C2 (A-12) 

The number of upper-atmosphere observations available for 
analysis falls off rapidly with increasing altitude. The 
decrease occurs nearly stepwise in three height regions: (1) 
in the vicinity of 30 kilome.ters, ( 2 )  in the vicinity of 50 
kilometers, and ( 3 )  in the vicinity of 90 kilometers. At heights 
up to about 28 kilometers, the values of atmospheric pressure 
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and density, as well as their respective standard deviations, 
a{p} and a { p )  are reasonably well known from many thousands of 
observations. For purposes of this discussion, the value of 
o{p} at an altitude of 28 kilometers, the low limit of the 
altitude profile is taken to be 1.45 x lo2 nt m-2, with an 
uncertainty of 5 6 percent. The same percent uncertainty is 
assumed for the value of a { p }  which is taken to be 2.08 x 
kg m-3 at this altitude. 
uncertainty have been adopted as C1 and 6 C 1  respectively. 

The 28-kilometer value of a{p) and its 

Above 90 kilometers height, the number of atmospheric 
soundings decreases rapidly with increasing height. Between 
90 and 108 kilometers, the available data sample for the study 
reported in the main body of this paper for any particular 
height level, summed over all observation sites, decreased from 
84 to 37 samples. For this latter altitude, the value of a{p) 
was calculated to be 2.7 x nt m-2 while the value of o { p )  
was calculated to be 3.69 x 10-1 kg m-j (ref. 11) . 
o{p) has been adopted for the upper limit, of the altitude pro- 
file of o{p), where the percent uncertainties of both o{p) and 
o { p )  are assumed to be f 100 percent. This value of alp) and 
its uncertainty have been adopted for C2 and 6Cz respectively. 
The 108-kilometer value of o{p) is seen to be five orders of 
magnitude smaller than the adopted 28-kilometer value of 
1.45 x lo2 nt m-2. 
approximately exponentially, i.e., in the manner of KC-AZ, 
between these two altitudes. Using the cited end-point values 
of Q to define the function, it can be shown that the value of 
K is 6.504 x lo3 nt m-3, and that of A is 1.359 x 
The value of o { p )  is assumed to approximate a similar function 
ke-aZ such that the cited end points imply a value of 
9.592 x kg m-3 for k, and a value of 1.368 x m-1 for a .  

This value of 

It is apparent that o{p) or Q must vary 

m-l. 

UPWARD INTEGRATION 

With the value of C 1  and the altitude profile of Z 
established, Eq. (A-11) yields the altitude profile of 11, an 
approximation of which is shown in Figure A-1. For the sake of 
simplicity, no uncertainty band has been indicated for this 
quantity although the uncertainty in I is discussed below. The 
adopted value of C1 is also shown in this figure, but in this 
case an uncertainty band of f 6 percent is given. The value of 
C1 and its uncertainty band are given by three lines Cl.l, C1,2, 
and C1 , where C1 represents the adopted value of 
1.45 x'?02 nt m-2, 'and where. C1,l and C 
tively, the + 6 percent and -6 percent kpartures from the 
adopted value. It is apparent from the figure that except for 
t h e  v e r y  l o w e s t  p o r t i o n  o f  t h e  r ange  of  i n t e g r a t i o n ,  t h e  v a l u e  
of 11 is of the same order of magnitude as the value of C1. 

represent, respec- 
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For altitudes above the lowest 4 kilometers of the range of 
integration, the value of 11 is greater than one half the value 
of C1. Thus, for upward integration, it is apparent that except 
for the lowest altitude within the range of the integration, the 
magnitude of C 1  and 11 are such that their percent uncertainties 
both contribute significantly to PUQ, as expressed by Eq. (A-9). 
For these altitudes, the relative magnitude of the two terms 
under the square-root sign depends primarily on the relative 
magnitudes of the percent uncertainties. 

At Zo, the initial altitude, 11 is zero and Eq. (A-9) 
reduces to: 

&cl PUC,) 2 
PUQl = - = PUCl 

c1 
(A-13) 

As Z increases above Z , I1 increases rapidly. At the same time, 
the growing value of (f1 PU11)2 increases the value of the 
numerator of Eq. (A-9) to some value greater than d(Cl PUCi)Z, 
while the growing value of I1 decreases the value of the 
denominator to some value less than C1. The two effects occurring 
simultaneously cause the value of PUQl to increase rapidly from 
its minimum value of PUC1. At an altitude of about 20 kilometers 
above the bottom of the range of integration, where I1 approaches 
a value of about 0.9 of C1, the value of PUQl becomes about 20 
times that of PUC . As the integration proceeds to even greater 
altitudes above the initial level, the value of PUQl approaches 
infinity as ( C 1  - 11) approaches zero, essentially independent 
of the values of PUCl and PUI1. It is apparent from Figure A-1 
that for a f 6 percent uncertainty in C 1  and no uncertainty in 
11, the value of (C1 - Il), and, hence that of Q1 could become 
zero at an altitude Z, as low as about 53 kilometers. At 
greater altitudes, the values of Q would be mezningless. An 
uncertainty band of f 6 percent associated with 11, would expand 
the point Z, to a region extending from a lower limit of about 
4 3  km to the top of the range of integration, 108 km. Within 
this region, the model value of Q1 would be meaningless. 

yields reasonable values of Q1 and PUQl only at altitudes very 
close to the reference level. 

From this analysis, it is apparent that upward integration 
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Figure A-1.- Relative values of the two terms of Eq. (A-1) 
as a function of altitude for upward integra- 
tion from altitude zo 

DOWNWARD INTEGRATION 

The introduction of the value of the integration constant 
C2, as well as the estimated altitude profile of Q into Eq. 
yields an estimate of the altitude profile of 12, the integral 
term associated with downward integration. An approximation of 
this quantity is depicted in Figure A-2. As in the case of 11, 
simplicity precludes the depicting of an uncertainty band for . For downward integration, from high to lower altitudes, 

with the value of I2 for much of the range of integration. 
adopted value of C = 2.7 x 

(A-12) 

e value of the integration constant C2 is very small compared 
The 

nt mm2 with an assumed uncer- 
tainty band of f 1 8 0 percent, if drawn to scale in Figure A-2, 
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could not be distinguished from the abcissa of the graph. 
Though not apparent from the graph, it may be stated that the 
value of I2 grows from zero to about ten times the value of C2 
as the altitude decreases about 18 km from Zo. 
the value of I2 continues to grow by a factor of about 10 for 
each successive 17-kilometer decrement in 2 included within the 
integral. From this information, one may show that C2 is very 
small compared with I2 for all but the upper 20 to 30 kilometers 
of the range of integration. Thus, as the increasing range of 
altitudes encompassed by the integral becomes greater than 30 
km, the contribution of PUC2 to PUQ2 through Eq. 
negligible even for an uncertainty in C2 as large as 100 percent. 

From this point, 

(A-10) becomes 

- 30 40 SO 60 70 BO 90 100 110 

ALTITUDE (km) 

Figure A-2.- Values of the integral term of Eq. (A-2) 
as a function of altitude for downward 
integration from altitude z 

0 

For this situation, (Zo - Z) > 30 kilometers, Eq. (A-10) 
reduces essentially to: 

= PU12 
- )](I2 PUI2I2 

PUQ2 = 
I2 

(A-14) 
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At altitude Zo, where I2 is zero, Eq. (A-10) reduces exactly to: 

= PJC2 
c2  

PUQ2 = (A-15) 

so that PUQ2 = PUC2, which is f 100 percent for the adopted 
conditions. For altitudes within the upper 30 kilometers of 
integration, the uncertainty PUQ decreases from a maximum of 
PUC2 at Zo toward the value of P6I as the altitude decreases 
from Zo. (A-10)  does no$ explode for any values of 
Z, and reasonable values of uncertainty of Q are obtained for 
the entire range of integration. 

Thus, Eq. 

Obviously, if only one direction of integration is to be 
selected, downward integration is to be preferred over upward 
integration. If the value of PUI2 at 28 km altitude from down- 
ward integration is greater than PUCl, upward integration may 
possibly yield a slightly more precise value of Q in the immediate 
vicinity of 28 km. The uncertainty of such a value of Q will, 
however, rapidly grow to unacceptable values if this upward 
integration pracess is carried out for more than a few kilometers. 

QUADRATURE FORMULA 

A somewhat secondary but necessary consideration effecting 
the overall uncertainty of the model values of a{p) involves 
the selection of a quadrature formula to evaluate the integral 
term of E q s .  (A-1)  and (A-2). The selected quadrature formula 
serves as the basis for the development of an uncertainty 
expression for the integral term. The reason for designating 
the selection of a quadrature formula as a secondary consideration 
is due to the fact that while different normally acceptable 
quadrature formulae approximate the actual integral with varying 
degrees of accuracy, the error introduced by the poorest of 
these approximations is very small compared with other uncertain- 
ties. Three relatively simple formulas which have been considered 
are: (1) the linear trapezoidal rule, (2) the logarithmic 
trapezoidal rule, and ( 3 )  Simson's rule. Minzner (ref. 15) has 
shown the logarithmic trapezoidal rule to be a good approxima- 
tion of the definite integral for any function whose logarithm 
is nearly a linear function of the independent variable. Since 
the integrals 11 and I2 were both shown to meet this condition, 
the logarithmic trapezoidal rule has been adopted. Using this 
rule, we may rewrite Eq. (A-1)  as well as Eq. (A-2) as: 
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where 
-2 g = 9.80665 m sec , 

z = height in meters, 

v = a{pl-rCp,pl, 

i = the number of increments included in the quadrature 
procedure thereby involving a total of (i + 1) altitudes. 

With downward integration, the value of 
the value of Zm-1 is greater than Zj, such that (Z, - Zj-1) is 
negative, and $his negative sign coupled with the negative sign 
of the summation term effectively makes a{p)i equal to the sum 
of two positive terms. The expression resulting from Simpson's 
rule would probably yield a slightly better approximation to 
the actual integral of Eq. (A-2) than that resulting from the 
logarithmic trapezoidal rule as shown in Eq. (A-161, but at 
the expense of considerably more complication. The linear 
trapezoidal rule would yield a somewhat poorer approximation, 
particularly in cases where the data points are distributed 
nonuniformly with altitude. The added uncertainty introduced 
into a{p) by the poorest of these three quadrature formulas 
would be small, however, compared with the uncertainty which 
is propagated into o{pl through the observational errors in the 
constant of integration and in the combined variable V, both 
of which enter into any quadrature formula that may be used to 
express I. 

(Vj - Vj-1) is positive, 

The precise form of the equation used to express the 
uncertainty of the integral term depends directly upon the 
particular quadrature formula used, and while the form of the 
uncertainty expression related to each of the several quadrature 
formulae differs extensively, one from the other, the value of 
the computed uncertainty 61 for any common set of conditions 
is not apt to differ greatly regardless of the form of the 
uncertainty equation from which it is computed. 

Again, the Gaussian method serves as the basis for the 
generation of the uncertainty expression, such that 61 the 
absolute uncertainty in the integral term is given by: 
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I 

(A-17) 

For each related pair, Z. and V - ,  of a data set, the un- 

Consequently, the right-hand side df Eq. (A-17) may 

certainty in both members of $he p a d  may be lumped into one 
of the members Vj, with the other member Z being considered 
exact. 
be simplified so that 61 may be expressed as: 

a1 6V >' 
j-1 j-1 j=1 

(A-18) 

This expression implies the taking of the partial derivation 

Vi-1, Vi. The quantity I is itse f 
of I with respect to each of the series of variables VOl 

expressed ad a series, formed in such a manner that each member 
of the series Vo to Vi, except these two end values, appears in 
two successive terms of the series. Thus, in semi-expanded 
form, the integral term of Eq. (A-16) may be expressed as: 

. ' . )  Vj-11 V.1 Vj+l, ... , 

(A-19) 

The consequence of this expression is that the partial derivative 
of I with- respect to Vo, and the partial derivative of I with 
respect to Vi both result in expressions involving only one term 
of the series approximation of I. The partial derivative of I 
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with respect to all other members of the series of variables, 
i.e., V1 to Vi-1 results in -ressions involving two successive 
terms of the series approximation of I. Thus: 

[ (zl-zof-) ( 6 V o j 2  ’ 

V +  
2 

(A-20) 

The particular arrangement of the terms under the radical sign 
is to emphasize the similarity of two groups of terms. 

It has already been shown that, for the purposes of this 
study, o { p )  may be assumed to be a simple exponential function 
of altitude varyin 
3 . 6 8 7  x 10-8  kg m-j at 1 0 8  kilometer altitude. 
usually has a value between 0 . 6  and 1.0, and never exceeds 1.0, 
we may approximate r{p,p) by unity of all altitudes, in which 
case: 

from 2 . 0 8 3  x 10-3  kg m-3 at 28  kilometers to 
Since r{p,,p) 

v = a { p )  ke -az (A-21) 

where 

k = 9 . 5 9 2  x 

a = 1 . 3 6 8  x 

If the altitude increments of successive terms on the 
right-hand side of Eq. (A-20) are equal, the uncertainty 
expression can be considerably simplified since: 

eaAz = - a = 1.1466 v.+l vi V. 

j-1 
-=-=3=-= 

j vi-l V V 
vO 

(A-22) 
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(A-23) 

r 
{(Z1-Z0)(" -d; - d)j2 (6"o) + I 

ln(V1/Vo) = ln(v./vj-l) = ln(vj+l/Vj) = ~ ( V ~ / V ~ - ~ )  
3 

= In a = aAz E d = 0,1368 (A-24) 

With the above listed simplifications, Eq. (A-20) can be 
rewritten as: 

(A-25) 

The radical on the right-hand side of this equation encompasses 
a series of (i + 1) terms, each of which contains an uncertainty 
factor SVj. This factor varies from term to term in accordance 
with term number and in accordance with the number of the members 
of the corresponding set of values of V -  comprising a part of the 
data set. In addition to the uncertainzy factor, each of these 
terms includes a factor representing that portion of the altitude 
range to which the particular uncertainty 6V- applies. For the 
first term of the series, corresponding to do, the altitude 
factor consists of a single altitude element ( Z 1  - Zo) multiplied 
by a dimensionless coefficient [(a - 1 - d)/d21 which will 
hereafter be called F. The altitude factor of the last term of 
the series corresponding to SVi, also consists of a single 
altitude element multiplied by a different dimensionless coeffi- 
cient [(b - 1 + d)/d2] which will hereafter be called L. The 
remaining terms under the radical, those terms corresponding to 
the general uncertainty factor 6V , all have altitude factors 
consisting of two terms. One of Zhese terms consists of the 
altitude element (zj - Zj-1) multiplied by the dimensionless 
coefficient L. The other term of the altitude factor consists 
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of the altitude element (zj+l - z . )  multiplied by the coefficient 
F. These two altitude elements ( z j  - z j - 1 )  and ( z - + 1  - Zj) are 
the two elements which are separated by z j ,  the alzitude 
corresponding to 6V 

altitude elemenis are equal to a fixed amount Az, Eq. 
reduces to: 

3 

j* 
If (z - z -1) is equal to ( z j + l  - z j ) t  i.e., if all the 

(A-25) 

(A-26) 

If the other assumptions, which lead to the series of Eqs. (A-21) 
to (A-24) ,  are appli'ed to the coefficients defined as F and L ,  
these coefficient may be defined in terms of a*Az: 

-a*Az b - 1 + d -.e + a*Az - 1 
CI 

- .  L E  CI 

(A-27) 

(A-28) 

= 1 . 1 4 6 6 ,  a- Az Then, for AZ = 1000 m, a*AZ = 0 . 1 3 6 8 ,  a = e 
b = e-aonz = 0 , 8 7 2 2 ,  F = 0 . 5 2 3 6 ,  L = 0 . 4 7 8 G I  and F + L = 1 . 0 0 1 6 .  
If the values of the members of the set 6Vo, * * .  , svj, O m -  6Vi 
are known, 61 the uncertainty of the integral may be calculated. 

For purposes of illustration, it is assumed that each member 
of the set-of SV, is 6 percent of the corresponding member of the 

6Vi form a geometric series with a common ratio "all previously 
defined to be 1 . 1 4 6 6 .  Eq. (A-261,  however, calls for the sum 
of squares of the members of the set SVj, i.e., 

set Vj. Thus, consecutive members of the set 6Vo, * - a  , svj, *.. ,  

j=i+l 

j=1 
c ("j) 2. 
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The members of this set (SV,) 
with the common ratio a2, such that: 

also form a geometric series 

(A-29) 

Evaluating this expression as a part of Eq. (A-26) on the 
basis of the specified conditions, yields a value 2.26 nt m-2 
for 61, or 1.54 percent of 1.45 x lo2 nt m-2, the 28 kilometer 
value of oip). 
large number of increments in the integration, the percentage 
uncertainty of the entire integral is considerably less than the 
percentage uncertainty of any single element. This situation 
suggests that observations of Vj be made at reasonably close 
altitude intervals. 

It is interesting to note that for a sufficiently 

It can also be shown that since the absolute uncertainty 
grows exponentially with decreasing altitude (for a fixed relative 
uncertainty), the lowest 17-km region of the integration, within 
which the value of V changes by a factor of 10 contributes about 
99 percent of the total uncertainty in 61. Thus, even if the 
percent uncertainty in the values of V at the upper end of the 
range of integration in excess of 40 km should be found to be 
very large, these large percent uncertainties would contribute 
very little to the uncertainty in I at the lower altitudes. 

j 

SUMMARY 

The following statements regarding computational procedures 
have been demonstrated either explicitely or implicitely in 
this appendix. 

(1) Only downward integration of VdZ, implying the sum 
of positive values of V and I is generally acceptable 
for computing a{p) over extended ranges of altitude. 

introduce less uncertainty in o{p) than is introduced 
by the uncertainty in the observed values of V. 

(2) Any of a number of reasonable quadrature formulas will 
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(3) The greater the number of observations of V within a 
particular altitude range, the smaller will be the 
uncertainty in the computed values of cr{p). 

( 4 )  When the range of altitudes involved in a particular 
set of data of V vs Z, extends for 50 or more kilo- 
meters, the uncertainties in V at the high-altitude 
end of the range have little influence on the un- 
certainty in the computer values of a{p) at the low- 
altitude end of the range of observation. 
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